Sayı Kümeleri

Önceki bölümde sayıları farklı özelliklerine göre sınıflandırabileceğimizden bahsettik, bu sınıflandırmalar içinde en temel olanı sayı kümeleridir. Tüm sayılar, aşağıda bahsedeceğimiz sayı kümelerinden birinin ya da birkaçının elemanı olabilir.

Sayı kümeleri isminden de anlaşılacağı gibi birer kümedir ve Kümeler konusunda göreceğimiz tüm işlemler ve özellikler sayı kümeleri için de geçerlidir.

Doğal Sayılar

Doğal sayılar kümesi 0'dan artı sonsuza kadar olan tam sayıları kapsar ve \( \mathbb{N} \) sembolü ile gösterilir.

0 hariç doğal sayılar kümesine sayma sayıları denir ve \( \mathbb{N^+} \) sembolü ile gösterilir.

NOT: Bazı (özellikle eski) kaynaklarda \( 0 \) doğal sayılara dahil edilmez, ancak günümüzde genel olarak \( 0 \) doğal sayı olarak kabul edilir.

Tam Sayılar

Tam sayılar kümesi eksi sonsuzdan artı sonsuza kadar olan tam sayıları kapsar ve \( \mathbb{Z} \) sembolü ile gösterilir.

Pozitif tam sayılar kümesi 1'den artı sonsuza kadar olan tam sayıları kapsar ve \( \mathbb{Z^+} \) sembolü ile gösterilir.

Negatif tam sayılar kümesi -1'den negatif sonsuza kadar olan tam sayıları kapsar ve \( \mathbb{Z^-} \) sembolü ile gösterilir.

0 (sıfır) pozitif ya da negatif değildir, işareti olmayan bir tam sayıdır.

Tam sayılar kümesini pozitif ve negatif tam sayılar kümeleri ve sıfırın birleşimi şeklinde aşağıdaki gibi gösterebiliriz.

Rasyonel Sayılar

Paydası sıfır olmamak şartıyla, iki tam sayının birbirine oranı şeklinde yazılabilen sayılara rasyonel sayılar denir. Rasyonel sayılar kümesi \( \mathbb{Q} \) sembolü ile gösterilir.

Aşağıdaki kesirli ifadeler tanım gereği birer rasyonel sayıdır.

Bir kesre dönüştürülebilen ondalık sayı ve yüzdeli ifadeler birer rasyonel sayıdır.

Tam sayılar kesirli ifade şeklinde yazılabildikleri için aynı zamanda birer rasyonel sayıdır.

Virgülden sonra sonlu sayıda basamağı olan ondalık sayılar, bir kesirli ifadeye dönüştürülebildikleri için birer rasyonel sayıdır.

Devirli ondalık sayılar ondalık basamakları tekrar ederek sonsuza gitse de, bir kesirli ifadeye dönüştürülebildikleri için birer rasyonel sayıdır.

Özetlemek gerekirse, rasyonel sayıların ya virgülden sonra sonlu sayıda basamağı vardır, ya da bu basamaklar sonsuza gidiyorsa bir basamaktan sonra kendini tekrar eder.

\( \pi \) ve \( e \) sayılarının virgülden sonraki basamakları tekrar etmeden sonsuza gittiği için rasyonel sayılar kümesine dahil değildirler. \( \pi \) sayısı her ne kadar bazı sorularda karşımıza \( 3,14 \) veya \( \frac{22}{7} \) olarak çıksa da, bu \( \pi \) sayısının gerçek değeri olmayıp, sorularda hesaplama kolaylığı açısından verilen yaklaşık bir değerdir.

\( \sqrt{2}, \sqrt[3]{15}, \sqrt[4]{95} \) gibi kökten çıkamayan ifadeler virgülden sonraki basamakları tekrar etmeden sonsuza gittiği için rasyonel sayılar kümesine dahil değildirler.

\( a \ne 0 \) olmak üzere, \( \frac{a}{0} \) biçimindeki ifadeler tanımsızdır ve ne rasyonel sayılar ne de herhangi diğer bir sayı kümesine dahil değildirler. Yine \( a \ne 0 \) olmak üzere, \( \frac{0}{a} \) biçimindeki ifadelerin ise 0'a eşit olduğunu unutmayalım.

İrrasyonel Sayılar

İrrasyonel sayılar, iki tam sayının birbirine oranı şeklinde yazılamayan sayılardır. İrrasyonel sayılar kümesi \( \mathbb{Q'} \) sembolü ya da genel kabul görmüş bir sembol olmasa da kimi zaman \( \mathbb{I} \) ile gösterilir.

İrrasyonel sayılara aşağıdaki örnekleri verebiliriz.

Reel (Gerçel) Sayılar

Rasyonel ve irrasyonel sayılar kümelerinin birleşim kümesine reel (gerçel) sayılar denir. Reel sayılar kümesi \( \mathbb{R} \) sembolü ile gösterilir.

Sayı doğrusu üzerindeki her bir noktayı bir reel sayı olarak ifade edebiliriz. Aynı şekilde, her bir reel sayı sayı doğrusu üzerinde farklı bir noktaya karşılık gelir. Benzer şekilde, iki boyutlu kartezyen düzlemindeki her bir noktanın koordinat (apsis ve ordinat) değerleri de reel sayılar kümesinde tanımlıdır.

Reel sayılar kümesi rasyonel ve irrasyonel sayılar kümelerinin birleşiminden oluşur, dolayısıyla rasyonel ve irrasyonel sayılar dışında bir reel sayı yoktur.

Reel sayılar kümesini pozitif ve negatif reel sayılar kümeleri ve sıfırın birleşimi şeklinde aşağıdaki gibi gösterebiliriz.

Sıfırın dahil olduğu aşağıdaki sayı kümeleri de belirtilen isimlerle kullanılabilir.

Sanal Sayılar

Karesi bir negatif reel sayı olan, ya da bir başka deyişle bir negatif reel sayının karekökü olan sayılara sanal sayı denir.

Aşağıdaki sayılar birer sanal sayıdır.

\( -1 \) sayısının kareköküne, ya da karesi \( -1 \) olan sayıya sanal birim denir ve \( i \) ile gösterilir.

Tüm sanal sayıları sanal birim cinsinden aşağıdaki şekilde ifade edebiliriz. Sanal birimin tüm reel sayı katları sanal sayılar kümesini oluşturur.

Karmaşık Sayılar

Reel ve sanal bileşenlerden oluşan ve \( a + bi \) şeklinde ifade edilebilen sayılara karmaşık sayılar denir. Karmaşık sayılar kümesi \( \mathbb{C} \) sembolü ile gösterilir.

Reel sayılar sanal kısımları sıfır olacak şekilde \( a + 0i \) şeklinde gösterilebildikleri için, tüm reel sayılar (doğal sayılar, tam sayılar, rasyonel sayılar, irrasyonel sayılar) aynı zamanda birer karmaşık sayıdır.

Benzer şekilde, sanal sayılar reel kısımları sıfır olacak şekilde \( 0 + bi \) şeklinde gösterilebildikleri için, tüm sanal sayılar aynı zamanda birer karmaşık sayıdır.

Karmaşık sayılar kümesi reel ve sanal sayılar kümelerinin birleşiminden oluşur, dolayısıyla reel ve sanal sayılar dışında bir karmaşık sayı yoktur.

Sanal ve karmaşık sayıları daha detaylı şekilde "Karmaşık Sayılar" konusunda inceyeceğiz.

Sayı Kümeleri Arasındaki İlişki

Yukarıda listelediğimiz sayı kümeleri arasındaki ilişkiyi küme işlemi ve bir şekil olarak aşağıdaki gibi özetleyebiliriz.

Sayı kümeleri
Sayı kümeleri
SORU:

Aşağıdaki sayıların ait oldukları sayı kümelerini belirtin.

\( 1; \sqrt{9}; \sqrt{10}; 4i \)

Çözümü Göster


« Önceki
Sayılara Giriş
Sonraki »
Sayı Doğrusu


Faydalı buldunuz mu?   Evet   Hayır