Alt Küme

Alt Küme

Bir \( B \) kümesinin her bir elemanı \( A \) kümesinin de bir elemanı ise \( B \) kümesi \( A \) kümesinin bir alt kümesidir.

Alt küme
Alt küme

\( B \) kümesi \( A \) kümesinin bir alt kümesi ise \( A \) kümesinin \( B \) kümesinin elemanları dışında başka elemanları da olabilir ya da iki küme eşit kümeler olabilir.

\( B \) kümesi \( A \) kümesinin bir alt kümesi ise aralarındaki ilişki aşağıdaki gibi "\( \subseteq \)" sembolü ile gösterilir. Alt küme sembolündeki eşitlik çizgisi iki kümenin eşit kümeler de olabileceğini gösterir.

Alt kümenin genel tanımını aşağıdaki şekilde yapabiliriz.

\( B \) kümesinin \( A \) kümesinde bulunmayan en az bir elemanı varsa \( B \) kümesi \( A \) kümesinin bir alt kümesi değildir.

Eleman sembolünde elemanlar küme parantezi içine alınmaz, alt küme sembolünde ise alınır. Aşağıdaki eleman ve alt küme gösterimlerindeki ayrımlara dikkat edilmelidir.

Öz Alt Küme

\( B \) kümesi \( A \) kümesinin bir alt kümesi iken \( A \) kümesinin \( B \) kümesinin elemanları dışında başka elemanları da varsa (yani iki küme eşit kümeler değilse) \( B \) kümesi \( A \) kümesinin bir öz alt kümesidir.

\( B \) kümesi \( A \) kümesinin bir öz alt kümesi ise aralarındaki ilişki aşağıdaki gibi "\( \subset \)" sembolü ile gösterilir. Alt küme sembolünde bulunan eşitlik çizgisinin öz alt küme sembolünde bulunmaması iki kümenin eşit kümeler olamayacağını gösterir.

Sayı kümeleri arasındaki alt küme ilişkisini aşağıdaki şekilde ifade edebiliriz.

Kapsama

Yukarıda bahsettiğimiz alt küme sembollerini yönlerini tersine çevirerek de kullanabiliriz. Bu durumda sembolün solundaki küme alt küme değil, kapsayan (üst) küme olmaktadır.

Alt Küme İşlem Kuralları

Boş küme tüm kümelerin bir alt kümesidir.

Tüm kümeler evrensel kümenin bir alt kümesidir.

Her küme kendisinin bir alt kümesidir, ama öz alt kümesi değildir.

Bir küme diğer bir kümenin alt kümesi ise kesişimleri alt kümeye, birleşimleri üst kümeye eşittir.

İki küme birbirinin alt kümesi ise bu iki küme eşittir.

\( A \) kümesi \( B \) kümesinin, \( B \) kümesi de \( C \) kümesinin birer alt kümesi ise aynı zamanda \( A \) kümesi \( C \) kümesinin bir alt kümesidir.

SORU:

\( A = \{ a, b, \{ a \}, \{ a, c \}, \{ b, c \} \} \) olduğuna göre, aşağıdakilerden hangileri doğrudur?

I. \( \{ a, b \} \in A \)

II. \( \{ a, c \} \subset A \)

III. \( c \in A \)

IV. \( \{ c \} \subset A \)

V. \( s(A) = 3 \)

Çözümü Göster


SORU:

\( A = \{ 1, 2, \{ 1 \}, \{ 2 \}, \{ 1, 2 \} \} \) olduğuna göre aşağıdakilerden hangileri doğrudur?

I. \( s(A) = 5 \)

II. \( \{ 1, 2 \} \subset A \)

III. \( \{ 1, \{ 1 \} \} \subset A \)

IV. \( \{ 1, 2 \} \in A \)

V. \( \{ 2, \{ 2 \} \} \in A \)

Çözümü Göster


SORU:

\( A \subset \{ 1, 2, 3, 4 \} \) ve \( B \subset \{ 1, 3, 5, 7, 9 \} \) olduğuna göre, aşağıdakilerden hangileri doğrudur?

I. \( A \subset B \) olabilir.

II. \( A \cap B \neq \emptyset \)

III. \( B \subset A \) olabilir.

Çözümü Göster


SORU:

\( P \subset Q \) olduğuna göre, \( (P \cap Q') \cup [P \cup (P' \cap Q)]' \) ifadesinin en sade hali nedir?

Çözümü Göster

Alt Küme Sayısı

Tüm Alt Kümelerin Sayısı

Bir kümenin tüm alt kümelerinin sayısını aşağıdaki formülle bulabiliriz.

Bu formülün mantığını şu şekilde açıklayabiliriz: Herhangi bir alt kümede belirli bir eleman ya vardır ya da yoktur. Bu iki farklı durumu kümenin tüm elemanlarına uygularsak, sayma konusunda göreceğimiz çarpma kuralı gereği ortaya çıkacak farklı durum sayısı \( n \) tane \( 2 \)'nin çarpımı, yani \( 2^n \) olacaktır.

r Elemanlı Alt Kümelerin Sayısı

Bir kümenin \( r \) elemanlı alt kümelerinin sayısını kombinasyon formülü ile bulabiliriz (\( n \) eleman içinden yapılabilecek \( r \) elemanlı farklı seçim sayısı).

Bir Alt Küme Örneği

Örnek olarak 5 elemanlı bir \( A \) kümesini aşağıdaki şekilde tanımlayalım.

\( A \) kümesinin bu \( 32 \) alt kümesi eleman sayılarına göre aşağıda listelenmiştir.

Eleman Sayısı Alt Küme Sayısı Alt Kümeler
0 elemanlı \( C(5, 0) = 1 \) \( \{ \} = \emptyset \)
1 elemanlı \( C(5, 1) = 5 \) \( \{ 1 \} \), \( \{ 2 \} \), \( \{ 3 \} \), \( \{ 4 \} \), \( \{ 5 \} \)
2 elemanlı \( C(5, 2) = 10 \) \( \{ 1, 2 \} \), \( \{ 1, 3 \} \), \( \{ 1, 4 \} \), \( \{ 1, 5 \} \), \( \{ 2, 3 \} \), \( \{ 2, 4 \} \), \( \{ 2, 5 \} \), \( \{ 3, 4 \} \), \( \{ 3, 5 \} \), \( \{ 4, 5 \} \)
3 elemanlı \( C(5, 3) = 10 \) \( \{ 1, 2, 3 \} \), \( \{ 1, 2, 4 \} \), \( \{ 1, 2, 5 \} \), \( \{ 1, 3, 4 \} \), \( \{ 1, 3, 5 \} \), \( \{ 1, 4, 5 \} \), \( \{ 2, 3, 4 \} \), \( \{ 2, 3, 5 \} \), \( \{ 2, 4, 5 \} \), \( \{ 3, 4, 5 \} \)
4 elemanlı \( C(5, 4) = 5 \) \( \{ 1, 2, 3, 4 \} \), \( \{ 1, 2, 3, 5 \} \), \( \{ 1, 2, 4, 5 \} \), \( \{ 1, 3, 4, 5 \} \), \( \{ 2, 3, 4, 5 \} \)
5 elemanlı \( C(5, 5) = 1 \) \( \{ 1, 2, 3, 4, 5 \} = A \)

Binom açılımı konusunda göreceğimiz üzere, bir kümenin tüm alt kümelerinin sayısı, yukarıdaki tabloda hesapladığımız her bir \( r \) elemanlı alt kümelerinin sayıları toplamına eşittir.

Öz Alt Küme Sayısı

Bir kümenin öz alt kümeleri kendisi dışındaki tüm alt kümelerine karşılık geldiği için, eleman sayısı \( n \) olan bir kümenin öz alt küme sayısı tüm alt küme sayısından bir eksik, yani \( 2^n - 1 \) olur.

Yukarıdaki örnekte son satırdaki 5 elemanlı alt küme dışındaki tüm alt kümeler \( A \) kümesinin birer öz alt kümesidir.

SORU:

\( A = \{ x: -8 \le x \lt -3, x \in \mathbb{Z} \} \)

kümesinin alt küme ve öz alt küme sayısı kaçtır?

Çözümü Göster


SORU:

\( A \) kümesinin alt küme sayısı 32, \( B \) kümesinin öz alt küme sayısı 255 olduğuna göre, \( s(A) + s(B) \) toplamı kaçtır?

Çözümü Göster


SORU:

Alt küme ve öz alt küme sayısının toplamı 127 olan kümenin eleman sayısı kaçtır?

Çözümü Göster


SORU:

Bir kümenin eleman sayısı 3 arttırılırsa alt küme sayısı 56 artıyor. Bu kümenin eleman sayısı kaçtır?

Çözümü Göster


SORU:

\( A = \{ a, b, c, d, e, f, g \} \) kümesinin alt kümelerinin kaç tanesinde \( b \) ve \( c \) eleman olarak bulunur ama \( f \) bulunmaz?

Çözümü Göster


SORU:

\( A = \{1, 2, 3, 4, 5, 6 \} \) kümesinin alt kümelerinin kaç tanesinde 2 veya 4 eleman olarak bulunur?

Çözümü Göster


SORU:

Bir kümenin eleman sayısı 2 artırılınca alt küme sayısı 96 arttığına göre, bu kümenin 2 elemanlı kaç alt kümesi vardır?

Çözümü Göster


SORU:

Öz alt kümelerinin sayısı \( 2a + 5 \) olan bir kümenin eleman sayısı 1 azaltıldığında alt küme sayısı \( a \) cinsinden ne kadar azalır?

Çözümü Göster


SORU:

\( A \) kümesinin alt kümelerinin sayısı \( B \) kümesinin alt kümelerinin sayısının 8 katıdır.

\( A \cup B \) kümesinin eleman sayısı 11 olduğuna göre, \( A \cap B \) kümesinin eleman sayısı en çok kaç olabilir?

Çözümü Göster


SORU:

\( A = \{ x: x \in \mathbb{Z}, \abs{x - 1} \le 3 \} \)

\( B = \{ x: x \in \mathbb{Z}, \abs{x + 1} \lt 3 \} \) olduğuna göre,

\( A - B \) kümesinin alt küme sayısı kaçtır?

Çözümü Göster


SORU:

\( A \) kümesinin alt kümelerinin sayısı 16, \( B \) kümesinin alt kümelerinin sayısı 8 olduğuna göre, \( A \cap B \) kümesinin eleman sayısı en çok kaç olabilir?

Çözümü Göster


SORU:

\( A \) kümesinin 6 elemanlı alt kümelerinin sayısı ile 5 elemanlı alt kümelerinin sayısı eşit olduğuna göre \( A \) kümesinin 2 elemanlı alt küme sayısı kaçtır?

Çözümü Göster


SORU:

\( A = \{ a, b, c, d, e \} \) kümesinin alt kümelerinin kaçında \( d \) elemanı bulunur ve \( a \) elemanı bulunmaz?

Çözümü Göster


SORU:

\( A = \{1, 2, 3, 4, 5, 6 \} \) kümesinin, içinde 2 veya 5 elemanlarının en çok birinin bulunduğu alt kümelerinin sayısı kaçtır?

Çözümü Göster


SORU:

\( A = \{ 1, 2, 3, 4, 5, 6 \} \) kümesinin tüm alt kümelerindeki elemanların toplamı kaçtır?

Çözümü Göster


SORU:

\( A = \{ 1, 2, 3, 4, 5, 6, 7 \} \) kümesinin 3 elemanlı alt kümelerinden kaç tanesinin elemanları çarpımı bir tek sayıdır?

Çözümü Göster


SORU:

\( A = \{ 0, 1, 2 \} \)

\( B = \{ -2, -1, 0, 1, 2, 3 \} \) olduğuna göre,

\( A \subseteq X \subset B \) koşulunu sağlayan kaç farklı \( X \) kümesi yazılabilir?

Çözümü Göster


SORU:

Elemanları tam sayı olan 5 elemanlı bir \( A \) kümesinin tüm iki elemanlı alt kümelerinin elemanları birbiri ile çarpıldığında,

\( -16, -14, -10, -6, 15, 21, 24, 35, 40, 56 \)

değerleri elde ediliyor.

Buna göre \( A \) kümesinin elemanları toplamı kaçtır?

Çözümü Göster


SORU:

\( X \subset \{ 1, 2, 3, 4, 5, 6 \} \) olmak üzere, \( X \) kümesinin içinde 3 ya da 5 elemanı bulunan kaç alt kümesi vardır?

Çözümü Göster


SORU:

\( A = \{ a, b, c, d, e, f \} \) kümesinin, içinde \( a \) bulunan alt küme sayısı \( x \), \( a \) veya \( b \) bulunan alt küme sayısı \( y \) olduğuna göre, \( y - x \) kaçtır?

Çözümü Göster

Kuvvet Kümesi

Bir \( A \) kümesinin kendisi ve boş küme dahil tüm alt kümelerini içeren kümeye kuvvet kümesi denir ve \( P_A \) şeklinde gösterilir.

Dikkat edilirse \( A \) kümesinin kuvvet kümesinin elemanları \( A \) kümesinin elemanları değil, \( A \) kümesinin alt kümeleridir.

\( n \) elemanlı bir kümenin alt küme sayısı \( 2^n \) olduğu için kuvvet kümesi de \( 2^n \) elemanlıdır. \( 2^n \) elemanlı böyle bir kuvvet kümesinin alt küme sayısı da \( 2^{(2^n)} \) olur.

SORU:

Kuvvet kümesinin alt küme sayısı \( 4^8 \) olan kümenin öz alt küme sayısı kaçtır?

Çözümü Göster


« Önceki
Küme Gösterim Yöntemleri
Sonraki »
Kümelerle İşlemler


Faydalı buldunuz mu?   Evet   Hayır