Kartezyen Çarpımının Grafik Gösterimi

Önceki bölümde kartezyen çarpımının sıralı ikililerden oluşan bir kümeye karşılık geldiğini ve analitik geometride gördüğümüz kartezyen düzleminde her noktayı ifade etmek için kullandığımız \( (x, y) \) koordinat gösteriminin de aslında bir sıralı ikili olduğunu belirtmiştik.

Kartezyen çarpımını aldığımız iki kümeden birincisinin elemanlarını bir noktanın \( x \) koordinatı, ikincisinin elemanlarını \( y \) koordinatı olarak kabul edersek, bu iki kümenin kartezyen çarpımı sonucu elde edeceğimiz sıralı ikilileri kartezyen düzleminde birer nokta olarak işaretleyerek kartezyen çarpımının grafiksel gösterimini elde edebiliriz.

Aşağıda iki kümenin kartezyen çarpımları, liste ve kartezyen düzleminde bir grafik olarak gösterilmiştir.

Kartezyen çarpımının grafiksel gösterimi
Kartezyen çarpımının grafiksel gösterimi

Aralıkların Kartezyen Çarpımı

Kümeler liste şeklinde yazabileceğimiz sınırlı sayıda elemandan oluştukları gibi, belirli bir aralıktaki sınırsız sayıda elemandan da oluşabilir. Örneğin reel sayılar kümesinde birer aralık olarak tanımlanmış iki kümenin de kartezyen çarpımını alabiliriz ve bu çarpımı bir grafik olarak gösterebiliriz.

Bu örnekte \( A \) kümesi \( [-1, 3) \) yarı açık aralığını, \( B \) kümesi de \( (1, 4] \) yarı açık aralığını içermektedir. Bu iki kümenin kartezyen çarpımının grafiği aşağıda verilmiştir.

Aralıktan oluşan kartezyen çarpımının grafiksel gösterimi
Aralıktan oluşan kartezyen çarpımının grafiksel gösterimi

Bu grafiğin bir önceki örnekteki grafikten en önemli farkı, grafiğin sadece tam sayılara karşılık gelen noktaları değil, bu noktalar arasındaki tüm reel sayılara karşılık gelen sonsuz sayıdaki noktayı da içeriyor olmasıdır. Ayrıca, \( A \) ve \( B \) kümelerinin temsil ettikleri aralıklardaki açık sınır noktaları bu grafikte kesikli doğrularla, kapalı sınır noktaları da sürekli doğrularla gösterilmiştir, dolayısıyla kesikli doğruların üzerindeki noktalar bu grafiğe dahil değildir, sürekli doğrular üzerindeki noktalar ise dahildir.

SORU:
Soru

Yukarıda \( A \times B \) kümesinin elemanları gösterilmiştir. Buna göre \( A - B \) kümesinin kaç alt kümesi vardır?

Çözümü Göster


SORU:

\( A = \{ x: -2 \lt x \le 1, x \in \mathbb{R} \} \)

\( B = \{ x: -1 \le x \lt 3, x \in \mathbb{Z} \} \)

olduğuna göre, \( A \times B \) kartezyen çarpım kümesinin grafiği nedir?

Çözümü Göster


SORU:
Soru

Yukarıda \( A \times B \) kartezyen çarpımının koordinat düzleminde grafiği verilmiştir.

Buna göre, aynı düzleme \( B \times A \) kartezyen çarpımının grafiği çizilirse kaç nokta iki kez işaretlenmiş olur?

Çözümü Göster


« Önceki
Kartezyen Çarpımı
Sonraki »
Küme ve Mantık İşlemleri Karşılaştırma


Faydalı buldunuz mu?   Evet   Hayır