İki ya da daha fazla kesri, paydaları aynı ortak sayıda buluşacak şekilde genişletme ya da sadeleştirme işlemine payda eşitleme denir. Payda eşitleme kesirlerin toplama ve çıkarma işlemlerinde sıklıkla kullanılır.
İki ya da daha fazla kesrin paydalarının eşitlenebileceği en küçük sayı, paydaların ortak katlarının en küçüğüdür (EKOK). Alternatif olarak, paydalar çarpımları olan sayıda da eşitlenebilir.
\( \dfrac{5}{6}, \quad \dfrac{3}{8} \)
Paydaları EKOK'larında eşitleme (\( EKOK(6, 8) = 24 \)):
\( \dfrac{5 \cdot 4}{6 \cdot 4} = \dfrac{20}{24}, \quad \dfrac{3 \cdot 3}{8 \cdot 3} = \dfrac{9}{24} \)
Paydaları çarpımlarında eşitleme (\( 6 \cdot 8 = 48 \)):
\( \dfrac{5 \cdot 8}{6 \cdot 8} = \dfrac{40}{48}, \quad \dfrac{3 \cdot 6}{8 \cdot 6} = \dfrac{18}{48} \)
\( \dfrac{3}{5}, \quad \dfrac{5}{6}, \quad \dfrac{7}{10} \)
Paydaları EKOK'larında eşitleme (\( EKOK(5, 6, 10) = 30 \)):
\( \dfrac{3 \cdot 6}{5 \cdot 6} = \dfrac{18}{30}, \quad \dfrac{5 \cdot 5}{6 \cdot 5} = \dfrac{25}{30}, \) \( \quad \dfrac{7 \cdot 3}{10 \cdot 3} = \dfrac{21}{30} \)
İki kesri toplarken, kesirlerin önce paydaları eşitlenir. Paydaları eşitlenmiş kesirlerin paylarının toplamı sonucun payına yazılır, ortak paydaları sonucun paydasına taşınır.
Kesirlerden biri ya da ikisi tam sayılı kesir ise kesirlerin tam sayı kısımları kendi aralarında toplanarak sonucun tam sayı kısmına yazılır. İşlem sonucu bir bileşik kesir ise dilenirse kesir tam sayılı kesre çevrilebilir.
İki kesri birbirinden çıkarırken, kesirlerin önce paydaları eşitlenir. Paydaları eşitlenmiş kesirlerin paylarının farkı sonucun payına yazılır, ortak paydaları sonucun paydasına taşınır.
Kesirlerden biri ya da ikisi tam sayılı kesir ise kesirleri önce bileşik kesre çevirerek çıkarma işlemini yapabiliriz.
İki ya da daha fazla sayıda kesri birbiriyle çarparken, kesirlerin payları kendi aralarında çarpılır ve sonucun payına yazılır, paydaları da kendi aralarında çarpılır ve sonucun paydasına yazılır.
Birbiriyle çarpılacak kesirlerin pay ve paydalarındaki sayılar çarpma işlemi öncesinde ya da sonrasında birbirleriyle sadeleştirilebilirler.
Kesirlerden biri ya da birkaçı tam sayılı kesir ise bu kesirler önce bileşik kesre çevrilir. İşlem sonucu bir bileşik kesir ise dilenirse kesir tam sayılı kesre çevrilebilir.
Çarpma işleminin terimlerinden biri bir tam sayı ise bu sayı paydası 1 olan bir kesir gibi düşünülerek çarpma işlemine dahil edilebilir.
\( 2 \cdot \dfrac{2}{3} = \dfrac{2}{1} \cdot \dfrac{2}{3} = \dfrac{4}{3} \)
\( \dfrac{1}{8} \cdot 3 = \dfrac{1}{8} \cdot \dfrac{3}{1} = \dfrac{3}{8} \)
Kesirlerle çarpma işlemi anlam olarak tam sayılarla çarpma işlemi ile aynıdır ve tekrarlı toplamaya karşılık gelir.
\( 2 \cdot \dfrac{1}{4} = \dfrac{1}{2} \quad \Longrightarrow \) 2 tane 1/4 (çeyrek) ekmek 1/2 (yarım) ekmek eder ya da 2 ekmeğin dörtte biri 1/2 (yarım) ekmek eder.
\( \dfrac{1}{4} \cdot 8 = 2 \quad \Longrightarrow \) 8 karpuzun dörtte biri 2 karpuz eder ya da 8 tane 1/4 (çeyrek) karpuz 2 karpuz eder.
\( \dfrac{1}{2} \cdot \dfrac{1}{2} = \dfrac{1}{4} \quad \Longrightarrow \) 1/2 (yarım) pastanın 1/2'si (yarısı) 1/4 (çeyrek) pasta eder.
Bir kesri diğer bir kesre bölerken, ikinci terimin pay ve paydası aralarında yer değiştirir ve terimlerin arasındaki bölme işareti çarpma işaretine çevrilir. Sonrasında terimler arasında yukarıda gördüğümüz çarpma işlemi yapılır.
Kesirlerden biri ya da ikisi tam sayılı kesir ise bu kesirler önce bileşik kesre çevrilir. İşlem sonucu bir bileşik kesir ise dilenirse kesir tam sayılı kesre çevrilebilir.
Bölme işleminin terimlerinden biri bir tam sayı ise bu sayı paydası 1 olan bir kesir gibi düşünülerek bölme işlemine dahil edilebilir.
\( 2 \div \dfrac{2}{3} = \dfrac{2}{1} \div \dfrac{2}{3} = 3 \)
\( \dfrac{3}{8} \div 3 = \dfrac{3}{8} \div \dfrac{3}{1} = \dfrac{1}{8} \)
Kesirlerle bölme işlemi anlam olarak tam sayılarla bölme işlemi ile aynıdır ve bölüştürme/paylaştırma işlemine karşılık gelir.
\( 2 \div \dfrac{1}{4} = 8 \quad \Longrightarrow \) 2 ekmeği 1/4'erli dilimlere bölersek 8 dilim elde ederiz.
\( \dfrac{3}{4} \div 3 = \dfrac{1}{4} \quad \Longrightarrow \) 3/4 pastayı 3 kişiye paylaştırırsak herkese 1/4 pasta düşer.
Bir kesrin üssü alınırken, üs işlemi pay ve paydaya ayrı ayrı yansıtılır ve payın ve paydanın ayrı ayrı üssü alınır.
Kesirlerin paydalarında köklü (irrasyonel) ifadeler bulunmasında matematiksel açıdan bir yanlışlık olmasa da, bu pek tercih edilen bir durum değildir ve genellikle gösterim kolaylığı ve tutarlılık açısından paydalardaki köklü ifadelerden kurtularak paydayı rasyonel ifadelere çevirmemiz istenir. Bunu birkaç şekilde gerçekleştirebiliriz:
Paydada tek terimli bir karekök ifadesi varsa, payı ve paydayı bu ifadeyle çarparak paydayı rasyonel hale getiririz.
Paydada tek terimli daha yüksek dereceli bir köklü ifade varsa, payı ve paydayı paydayı kökten kurtaracak bir kuvvetiyle çarparak paydayı rasyonel hale getiririz.
Paydada iki terimli bir ifade varsa, payı ve paydayı paydadaki ifadenin eşleniği ile çarparak paydayı rasyonel hale getiririz (daha fazla bilgi için: Eşlenik İfadeler).