Veya Bağlacı

\( p \) ile \( q \) önermelerinin "veya" bağlacı ile bağlanmasıyla elde edilen bileşik önermeye "\( p \) veya \( q \)" önermesi denir ve "\( p \lor q \)" biçiminde gösterilir.

Birbirine "veya" bağlacı ile bağlı iki ya da daha fazla önermenin yanlış olması için tüm önermelerin yanlış olması gerekir. Önermelerinden en az birinin doğru olması durumunda "veya" bileşik önermesinin sonucu doğru olur.

\( p \lor q \) önermesi için doğruluk tablosu aşağıdaki gibidir.

\( p \) \( q \) \( p \lor q \)
\( 1 \) \( 1 \) \( 1 \)
\( 1 \) \( 0 \) \( 1 \)
\( 0 \) \( 1 \) \( 1 \)
\( 0 \) \( 0 \) \( 0 \)

\( p \lor q \) bileşik önermesi için aşağıda bazı örnekler verilmiştir.

Bileşik Önerme Doğruluk Değeri Açıklama
Eiffel kulesi Paris'tedir VEYA Paris Fransa'nın başkentidir. \( 1 \lor 1 \equiv 1 \) Her iki önerme de doğrudur, dolayısıyla bileşik önerme de doğrudur.
\( 8 \cdot 4 = 32 \) VEYA \( 2 \cdot 2 = 5 \) \( 1 \lor 0 \equiv 1 \) Önermelerden birinin doğru olması "veya" bileşik önermesinin doğru olması için yeterlidir.
Dünya Ay'ın uydusudur VEYA Ay Dünya'nın uydusudur. \( 0 \lor 1 \equiv 1 \) Önermelerden birinin doğru olması "veya" bileşik önermesinin doğru olması için yeterlidir.
Bir hafta 5 gündür VEYA Haftanın ilk günü çarşambadır. \( 0 \lor 0 \equiv 0 \) Her iki önerme de yanlıştır, dolayısıyla bileşik önerme de yanlıştır.

Veya Bağlacının Değili

Bir "veya" bileşik önermesinin değili, bileşik önermeyi oluşturan önermelerin değillerinin "ve" bileşik önermesine denktir. Bu kural aynı zamanda De Morgan kuralları olarak bilinen kurallardan biridir.

Veya Bağlacı İşlem Özellikleri

"Veya" işleminin değişme özelliği vardır.

"Veya" işleminin birleşme özelliği vardır.

"Veya" işleminin "ve" işlemi üzerinde soldan ve sağdan dağılma özelliği vardır.

"Veya" işleminin "ya da" işlemi üzerinde soldan ve sağdan dağılma özelliği yoktur.

"Veya" işleminin birim (etkisiz) elemanı 0'dır.

Veya Bağlacı İşlem Kuralları

"Veya" bağlacı ile ilgili bazı kurallar aşağıdaki gibidir.

"Veya" bağlacının değişme ve birleşme özellikleri olduğu için önermeler arasındaki parantez kaydırılabilir ya da kaldırılabilir ve önermelerin sırası değiştirilebilir.

"Ve" ve "veya" bağlaçlarını birlikte içeren bir bileşik önermede parantezlerin yeri önemlidir ve parantezler kaldırılarak işlem sırası değiştirilemez. Aşağıda parantezlerin yerinin değiştirilmesinin önermenin doğruluk değerini değiştirebileceğine dair bir örnek verilmiştir.

SORU:

\( (p \lor q') \lor r' \equiv 0 \) olduğuna göre,

\( p \), \( q \) ve \( r \) önermelerinin doğruluk değerleri nedir?

Çözümü Göster


SORU:

\( (p \land q')' \lor (p' \lor q') \)

bileşik önermesinin doğruluk değeri nedir?

Çözümü Göster


SORU:

\( (p' \lor q) \land p \) önermesi doğru olduğuna göre,

\( p \lor q \) bileşik önermesinin doğruluk değeri nedir?

Çözümü Göster


SORU:

\( p \lor q' \equiv 0 \) olduğuna göre,

\( p' \land q \) bileşik önermesinin doğruluk değeri nedir?

Çözümü Göster


SORU:

\( p' \land q' \equiv 1 \) olduğuna göre,

\( p \land (p' \lor q) \)

bileşik önermesinin doğruluk değeri nedir?

Çözümü Göster


SORU:

\( [p' \land (q' \lor q)]' \) ifadesinin en sade hali nedir?

Çözümü Göster


SORU:

\( p \land q' \equiv 1 \)

\( p' \lor r \equiv 0 \)

olduğuna göre \( p \), \( q \) ve \( r \) önermelerinin doğruluk değerleri nedir?

Çözümü Göster


SORU:

Aşağıdaki önermelerden hangisinin doğruluk değeri 1'dir?

(a) \( (p \lor p') \land p \)

(b) \( (p \lor p')' \land p \)

(c) \( (p \land p') \lor (q \land q') \)

(d) \( p \lor (0 \land q)' \)

(e) \( (p' \lor q)' \land p \)

Çözümü Göster


SORU:

\( [p' \lor (p \land q')] \land (p \land q')' \) önermesinin en sade hali nedir?

Çözümü Göster


SORU:

\( p: x = 3 \)

\( q: x^2 = 9 \)

olduğuna göre \( p \lor q \) önermesinin olumsuzu nedir?

Çözümü Göster


SORU:

\( p: x = 0 \)

\( q: y = 0 \)

olduğuna göre, her \( x \) ve \( y \) reel sayısı için,

I. \( \abs{x} + \abs{y} \gt 0 \)

II. \( x \cdot y = 0 \)

önermelerinden hangileri \( p \lor q \) önermesine her zaman denktir?

Çözümü Göster


« Önceki
Ve Bağlacı
Sonraki »
Ya Da Bağlacı


Faydalı buldunuz mu?   Evet   Hayır