Parabolün Analitik Uygulamaları

Noktanın Parabole Göre Durumu

Bir noktanın bir parabole göre konumu üç farklı şekilde olabilir: Buna göre bir nokta şekildeki \( A \) noktası gibi parabolün üzerinde olabilir, \( B \) noktası gibi parabolün üstündeki bölgede olabilir ya da \( C \) noktası gibi parabolün altındaki bölgede olabilir.

Noktanın parabole göre durumu
Noktanın parabole göre durumu

Verilen bir noktanın bir parabole göre konumunu bulmak için noktanın apsis değerini (\( x_1 \)) parabol denkleminde \( x \) yerine koyarız.

Parabolün Parabole Göre Durumu

İki parabolün birbirlerine göre durumu da üç farklı şekilde olabilir: Buna göre şekildeki kırmızı parabol \( f(x) \) parabolü ile olduğu gibi iki noktada kesişebilir, \( g(x) \) parabolü ile olduğu gibi tek bir noktada (teğet) kesişebilir ya da \( h(x) \) parabolü ile olduğu gibi kesişmeyebilir.

Parabolün parabole göre durumu
Parabolün parabole göre durumu

Parabollerin birbirlerine göre durumunu anlayabilmek için yine iki denklemi ortak çözeriz ve elde ettiğimiz ikinci dereceden denklemin deltasına bakarız.

Parabolün Değeri

Parabolün değeri parabol fonksiyonunu belirli bir \( x \) değeri için hesapladığımızda elde ettiğimiz \( f(x) \), yani \( y \) değeridir.

Aşağıdaki koşullardan herhangi birinin bir parabol için her zaman doğru olduğunu biliyorsak, her koşulun yanında belirtilen durumların da doğru olduğu sonucuna varabiliriz.

Koşul Grafik Sonuç
Parabol değeri daima pozitif
\( f(x) \gt 0 \)
y > 0 için parabol grafiği Grafiğin kolları yukarı bakar (\( a \gt 0 \)), grafik \( x \) ekseninin üstünde kalır ve \( x \) eksenini kesmez (\( \Delta \lt 0 \)).
Parabol değeri daima pozitif ya da sıfır
\( f(x) \ge 0 \)
y >= 0 için parabol grafiği Grafiğin kolları yukarı bakar (\( a \gt 0 \)), grafik \( x \) ekseninin üstünde kalır ve \( x \) eksenini ya kesmez ya da bir noktada keser (\( \Delta \le 0 \)).
Parabol değeri daima negatif
\( f(x) \lt 0 \)
y < 0 için parabol grafiği Grafiğin kolları aşağı bakar (\( a \lt 0 \)), grafik \( x \) ekseninin altında kalır ve \( x \) eksenini kesmez (\( \Delta \lt 0 \)).
Parabol değeri daima negatif ya da sıfır
\( f(x) \le 0 \)
y <= 0 için parabol grafiği Grafiğin kolları aşağı bakar (\( a \lt 0 \)), grafik \( x \) ekseninin altında kalır ve \( x \) eksenini ya kesmez ya da bir noktada keser (\( \Delta \le 0 \)).
SORU:
Parabol soru

Yukarıdaki parabolün denklemi \( y = x^2 - 4x + m \)'dir.

\( T(r, k) \) tepe noktası ve \( A(OTA) = 14 \text{ br}^2 \) olduğuna göre, \( m \) kaçtır?

Çözümü Göster


SORU:

\( f: R \to R \) olmak üzere, \( f(x) = x^2 - 6x - 7 \) fonksiyonunun tepe noktası \( T \), \( x \) eksenini kestiği noktalar \( A \) ve \( B \) olduğuna göre, köşeleri \( A \), \( B \) ve \( T \) olan üçgenin alanı kaç \( \text{ br}^2 \) olur?

Çözümü Göster


SORU:
Parabol soru

\( OABC \) dikdörtgeninin \( B \) köşesi \( f(x) = x^2 - 8x + m \) parabolü üzerindedir. Parabol \( y \) eksenini \( (0, 20) \) noktasında kestiğine göre, \( A(OABC) \) kaç \( \text{ br}^2 \) olur?

Çözümü Göster


SORU:
Parabol soru

Yukarıdaki şekilde \( f(x) = x^2 - 8x + c \) parabolünün tepe noktası \( T \), \( OTA \) dik üçgeninde \( A(13, 0) \) olduğuna göre, \( B \) noktasının ordinatı kaçtır?

Çözümü Göster


« Önceki
Parabol ve Doğrunun Birbirine Göre Durumu
Sonraki »
Parabolde Eşitsizlikler


Faydalı buldunuz mu?   Evet   Hayır