Üslü İfade Tanımı

\( x^n \) ifadesi \( n \) tane \( x \) sayısının çarpım işlemini ifade eder. Bu ifadede \( x \) sayısına işlemin tabanı, \( n \) sayısına \( x \)'in üssü ya da kuvveti denir.

Üslü ifadeler
Üslü ifadeler

Çarpma işlemini tekrarlı toplama olarak düşünebildiğimiz gibi üs işlemini de tekrarlı çarpma olarak düşünebiliriz.

Bir sayının farklı kuvvetleri aşağıdaki şekilde okunur.

0 ve 1'le Üslü İşlemler

Sayıların 0. Kuvveti

0 hariç tüm reel sayıların sıfırıncı kuvveti 1'e eşittir.

Sayıların 1. Kuvveti

Tüm reel sayıların birinci kuvveti kendisine eşittir.

0'ın Kuvvetleri

0 sayısının pozitif reel sayı kuvvetleri 0'a eşittir.

0 sayısının negatif reel sayı kuvvetleri tanımsızdır.

0 sayısının 0. kuvveti için kesin kabul görmüş bir değer yoktur ve matematiğin farklı alt dallarında farklı gerekçelerle tanımsız ya da 1'e eşit olarak kabul edilir.

1'in Kuvvetleri

1'in tüm reel sayı kuvvetleri 1'dir.

Pozitif/Negatif Sayıların Tek/Çift Sayı Üsleri

Pozitif/negatif tam sayıların tek/çift pozitif tam sayı üslerinin pozitif/negatif olma durumları aşağıdaki gibidir.

İşlem Örnek
\( (+)^\text{Çift} = (+) \) \( 3^2 = 9 \)
\( (+)^\text{Tek} = (+) \) \( 3^3 = 27 \)
\( (-)^\text{Çift} = (+) \) \( (-3)^2 = 9 \)
\( (-)^\text{Tek} = (-) \) \( (-3)^3 = -27 \)

Bu tabloya göre, üs çift sayı ise sonuç tabanın işaretinden bağımsız her zaman pozitif, tek sayı ise tabanın işareti ile aynıdır.

Tek/Çift Sayıların Tek/Çift Sayı Üsleri

Üs bir pozitif tam sayı olmak üzere, tek ve çift sayıların arasındaki üs işleminin sonucunun tek/çift olma durumları aşağıdaki gibidir.

İşlem Örnek
\( \text{Çift}^\text{Çift} = \text{Çift} \) \( 4^2 = 16 \)
\( \text{Çift}^\text{Tek} = \text{Çift} \) \( 4^3 = 64 \)
\( \text{Tek}^\text{Çift} = \text{Tek} \) \( 3^2 = 9 \)
\( \text{Tek}^\text{Tek} = \text{Tek} \) \( 3^3 = 27 \)

Buna göre, sonucun tek/çift olma durumu açısından üssün bir önemi yoktur, taban çift ise sonuç çifttir, taban tek ise sonuç tektir. Bunun sebebi, çarpan sayısından bağımsız olarak çift sayıların çarpımının çift sayı, tek sayıların çarpımının tek sayı olmasıdır.

Üslü İfade Değerleri

1-9 Arası Sayıların Üsleri

1-9 arası sayıların 1000'e kadarki üs değerleri aşağıdaki tabloda verilmiştir.

1-9 arası sayıların 1000'e kadarki tam sayı üsleri
1-9 arası sayıların 1000'e kadarki tam sayı üsleri

Tam Kare Üslü İfadeler

1-30 arası sayıların tam kare değerleri aşağıdaki tabloda verilmiştir.

1-30 arası sayıların tam kare değerleri
1-30 arası sayıların tam kare değerleri

Sınav performansı açısından öğrencilerin yukarıdaki iki tablodaki değerleri bilmesini ya da hızlıca hesaplayabilmesini öneririz.

Üslü İfadelerin Son Rakamı

Son basamağı 0, 1, 5 ya da 6 olan sayıların tüm pozitif tam sayı kuvvetlerinin son basamakları yine sırasıyla 0, 1, 5, 6 olur. Bunun sebebi, bu rakamların kendileriyle bir kez çarpımında bu durumun oluşması ve diğer tüm kuvvetlerinde aynı durumun devam etmesidir.

Son basamağı 4 ya da 9 olan sayıların 1. ve sonraki ikişerli artan pozitif tam sayı kuvvetlerinin (3, 5, 7, vb.) son basamakları yine sırasıyla 4, 9 olur.

Son basamağı 2, 3, 7 ya da 8 olan sayıların 1. ve sonraki dörderli artan pozitif tam sayı kuvvetlerinin (5, 9, 13, vb.) son basamakları yine sırasıyla 2, 3, 7, 8 olur.


« Önceki
Üslü İfadeler
Sonraki »
Üslü İfade İşlem Kuralları


Faydalı buldunuz mu?   Evet   Hayır