Süreksizlik Tipleri

Bir fonksiyonun belirli bir noktadaki süreksizliği dört farklı şekilde olabilir.

Kaldırılabilir Süreksizlik

Kaldırılabilir süreksizlikte fonksiyonun bir noktadaki soldan ve sağdan limitleri birer reel sayı olarak tanımlıdır ve birbirine eşittir, dolayısıyla fonksiyonun bu noktada limiti vardır, ancak limit değeri fonksiyon değerinden farklıdır.

Kaldırılabilir süreksizlik
Kaldırılabilir süreksizlik

Bir fonksiyon parçalı bir fonksiyona dönüştürülerek ve kaldırılabilir süreksizlik olan noktasında fonksiyon değeri limit değerine eşitlenerek bu süreksizlik giderilebilir. Örneğin yukarıdaki grafikteki süreksizlik aşağıda bu şekilde giderilmiştir.

Sıçrama Süreksizliği

Sıçrama süreksizliğinde fonksiyonun bir noktadaki soldan ve sağdan limitleri birer reel sayı olarak tanımlıdır, ancak birbirinden farklıdır, dolayısıyla fonksiyonun bu noktada limiti tanımsızdır. Fonksiyon bu noktada herhangi bir değer alabilir.

Sıçrama süreksizliği
Sıçrama süreksizliği

Sonsuz Süreksizlik

Sonsuz süreksizlikte fonksiyonun bir noktadaki soldan ve sağdan limitlerinden en azından biri pozitif ya da negatif sonsuza gider. Fonksiyon bu noktada tanımsızdır.

Sonsuz süreksizlik
Sonsuz süreksizlik

Sonsuz süreksizlik genellikle fonksiyonları tanımsız yapan değerlerde oluşur. Bunlara örnek olarak rasyonel fonksiyonlarda sadece paydayı sıfır yapan \( x \) değerleri ve tanjant/kotanjant fonksiyonlarını tanımsız yapan değerler verilebilir.

  • \( \tan{x} \) fonksiyonunda \( \{ \ldots, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots \} \) noktaları
  • \( \cot{x} \) fonksiyonunda \( \{ \ldots, 0, \pi, \ldots \} \) noktaları
  • \( f(x) = \frac{g(x)}{h(x)} \) biçimindeki fonksiyonlarda \( g(x) \ne 0, h(x) = 0 \) koşullarını sağlayan noktalar

Salınım (Osilasyon) Süreksizliği

Bazı fonksiyonlar belirli bir noktaya yaklaşırken salınım (osilasyon) hareketi yapar ve fonksiyonun yaklaştığı değer belirli bir reel sayı olarak ifade edilemez. Bu tip noktalarda soldan, sağdan ve iki yönlü limitler tanımsızdır, dolayısıyla fonksiyonlar bu noktalarda süreksizdir.

Böyle bir fonksiyonun grafiği ve denklemi aşağıda verilmiştir.

Salınım (osilasyon) süreksizliği
Salınım (osilasyon) süreksizliği

« Önceki
Süreklilik ve Süreksizlik Örnekleri
Sonraki »
Fonksiyonların Sürekliliği


Faydalı buldunuz mu?   Evet   Hayır